English 5th Grade A-L Vocabulary Cards and Word Walls Revised: 11/18/14

Important Notes for Teachers:

- The vocabulary cards in this file match the Common Core, the math curriculum adopted by the Utah State Board of Education, August 2010.
- The cards are arranged alphabetically.
- Each card has three sections.
 - Section 1 is only the word. This is to be used as a visual aid in spelling and pronunciation. It is also used when students are writing their own "kid-friendly" definition and drawing their own graphic.
 - Section 2 has the word and a graphic. This graphic is available to be used as a model by the teacher.
 - Section 3 has the word, a graphic, and a definition. This is to be used for the Word Wall in the classroom. For more information on using a Word Wall for Daily Review – see "Vocabulary – Word Wall Ideas" on this website.
- These cards are designed to help all students with math content vocabulary, including ELL, Gifted and Talented, Special Education, and Regular Education students.

For possible additions or corrections to the vocabulary cards, please contact the Granite School District Math Department at 385-646-4239.

Bibliography of Definition Sources:

<u>Algebra to Go</u>, Great Source, 2000. ISBN: 0-669-46151-8 <u>Math on Call</u>, Great Source, 2004. ISBN-13: 978-0-669-50819-2 <u>Math at Hand</u>, Great Source, 1999. ISBN: 0-669-46922 <u>Math to Know</u>, Great Source, 2000. ISBN: 0-669-47153-4 <u>Illustrated Dictionary of Math</u>, Usborne Publishing Ltd., 2003. ISBN: 0-7945-0662-3 <u>Math Dictionary</u>, Eula Ewing Monroe, Boyds Mills Press, 2006. ISBN-13: 978-1-59078-413-6 <u>Oxfod Illustrated Math Dictionary</u>, 2012. ISBN: 978-0-19-407128-4 <u>Student Reference Books</u>, Everyday Mathematics, 2007. Houghton-Mifflin eGlossary, http://www.eduplace.com Interactive Math Dictionary, http://www.amathsdictionaryforkids.com/

acute triangle

acute triangle

acute triangle

A triangle with no angle measuring 90° or more.

addend

addend

addend

Any number being added.

addends

Additive Identity Property of 0

Additive Identity Property of 0

4 + 0 = 4

Additive Identity Property of 0

Adding zero to a number gives a sum identical to the given number.

4 + 0 = 4

algorithm

algorithm

Partial Product Example

555		
<u>× 7</u>		
35	Step 1:	Multiply the ones.
350	Step 2:	Multiply the tens.
<u>3500</u>	Step 3:	Multiply the hundreds.
3885	Step 4:	Add the partial products.

Partial Product Example

algorithm

555		
× 7		
35	Step 1:	Multiply the ones.
350	Step 2:	Multiply the tens.
<u>3500</u>	Step 3:	Multiply the hundreds.
3885	Step 4:	Add the partial products.
2002		inde die partie producto.

Step-by-step method for computing.

area

2 rows of 5 = 10 square units or $2 \times 5 = 10$ square units

2 rows of 5 = 10 square units or $2 \times 5 = 10$ square units

The measure, in square units, of the interior region of a two-dimensional figure or the surface of a three-dimensional figure.

area

area

area model

area model $\begin{array}{c} 20 + 8 \\ 9 \times 20 = 180 \\ 9 \times 8 = 72 \end{array}$

A model of multiplication that shows each place value product.

array

An arrangement of objects in equal rows.

Associative Property of Addition

Associative Property of Addition

(5+7) + 3 = 5 + (7+3)12 + 3 = 5 + 1015 = 15

Associative Property of Addition

```
(5+7) + 3 = 5 + (7+3)
12 + 3 = 5 + 10
15 = 15
```

The sum stays the same when the grouping of addends is changed. (a + b) + c = a + (b + c), where *a*, *b*, and *c* stand for any real numbers.

Associative Property of Multiplication

Associative Property of Multiplication

 $(5 \times 7) \times 3 = 5 \times (7 \times 3)$ $35 \times 3 = 5 \times 21$ 105 = 105

Associative Property of Multiplication

 $(5 \times 7) \times 3 = 5 \times (7 \times 3)$ $35 \times 3 = 5 \times 21$ 105 = 105 The product stays the same when the grouping of factors is changed. $(a \times b) \times c = a \times (b \times c)$, where *a*, b, and c stand for any real numbers.

attribute

A characteristic. e.g., size, shape or color

axis

bar graph

bar graph

A graph that uses the height or length of rectangles to compare data.

bar model

bar model

has 2 times as much money as Velma. If Tina has \$60, how much money do they have altogether?

bar model

Eddie has 3 times as much money as Velma. Tina has 2 times as much money as Velma. If Tina has \$60, how much money do they have altogether? A model that uses bars to represent known and unknown quantities and the relationship between these quantities.

base of a solid figure

base of a solid figure

base of a solid figure

A base of a solid figure is usually thought of as a face upon which it can "sit." Most solid figures have more than one base.

base of an exponent

base of an exponent

base of an exponent exponent 10⁴

base

The number that is raised to a power. In 10^4 , 10 is the base and 4 is the exponent. 10 is raised to the power of 4. $(10^4 = 10 \times 10 \times 10 \times 10 = 10,000)$

base-ten numeral form

base-ten numeral form

12,345

3 is in the hundreds place.It has a value of3 hundreds or 300.

base-ten numeral form

12,345

3 is in the hundreds place. It has a value of 3 hundreds or 300. A common way of writing a number using digits. The value of a numeral depends on where it appears in the number. (also known as standard form)

base-ten numerals

base-ten 01234 numerals 56789

 base-ten
 0 1 2 3 4

 numerals
 5 6 7 8 9

Any of the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. The symbols can represent any amount based on a place value system of grouping by tens.

benchmark

benchmark 0.76 - 0.23 \downarrow \downarrow \downarrow 0.75 - 0.25

benchmark

0.76 - 0.230.75 - 0.25

A familiar number that can be used as a reference point. Benchmarks can be used to estimate decimal sums and differences. (0, 0.25, 0.50, 0.75, and 1 are good benchmark numbers.)

benchmark fractions

2 benchmark $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ 1 5 fractions $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ 1 8 8 8 4 5 $\frac{3}{8}$

benchmark fractions

Fractions that are commonly used for estimation. A benchmark fraction helps you compare two fractions.

1

5

1

 $\frac{1}{8}$

1

 $\frac{1}{8}$

braces

braces

Braces can be used to indicate that the objects written between them belong to a set.

brackets

A type of grouping symbol used in pairs that tells what operation to complete first.

capacity

Capacity refers to the amount of liquid a container can hold.

centimeter (cm)

centimeter (cm)

A metric unit of length equal to 0.01 of a meter.

common denominator

common denominator

 $\frac{2}{3}$ and $\frac{3}{4}$

common denominator **12** is a common denominator for:

$$\frac{2}{3}$$
 and $\frac{3}{4}$

For two or more fractions, a common denominator is a common multiple of the denominators.

common factor

common

12 (1, 2, 3, 4, 6, 12) 18 (1, 2, 3, 6, 9, 18)

factor

Common Factors of 12 and 18: 1, 2, 3, 6

common

factor

12 (1, 2, 3, 4, 6, 12) 18 (1, 2, 3, 6, 9, 18)

Common Factors of 12 and 18:

1, 2, 3, 6

Any common factor of two or more numbers.

common multiple

common multiple

4, 8, 12, 16, 20, 24, 28, 32, 36... **6**, 12, 18, 24, 30, 36, 42...

Common Multiples of 4 and 6: 12, 24, 36...

common multiple **4**, 8, 12, 16, 20, 24, 28, 32, 36... **6**, 12, 18, 24, 30, 36, 42...

Common Multiples of 4 and 6: 12, 24, 36...

Any common multiple of two or more numbers.

Commutative Property of Addition

Commutative Property of Addition

3 + 2 = 2 + 3

Commutative Property of Addition

$$3 + 2 = 2 + 3$$

The sum stays the same when the order of the addends is changed.

> a + b = b + a, where *a* and *b* are any real numbers.

Commutative Property of Multiplication

Commutative Property of Multiplication

Commutative Property of Multiplication

The product stays the same when the order of the factors is changed.

 $a \times b = b \times a$, where *a* and *b* are any real numbers.

compatible numbers

compatible numbers

 $1,354 \div 62$ $1,200 \div 60$

compatible numbers

 $1,354 \div 62$ $1,200 \div 60$

Numbers that are easy to compute mentally and are close in value to the actual numbers. Compatible numbers can be used when estimating.

compose

Compose
$$(3 \times 100) + (4 \times 10) + (2 \times 1)$$

 $300 + 40 + 2$
 342

compose

$$3 \times 100) + (4 \times 10) + (2 \times 1)$$

 $300 + 40 + 2$
 342

To put together, as in numbers or shapes.

congruent

congruent

Having exactly the same size and shape.

coordinate grid

coordinate grid

coordinate grid

A two-dimensional system in which the coordinates of a point are its distances from two intersecting, usually perpendicular, straight lines called axes. (also known as coordinate plane or coordinate system)

coordinate plane

coordinate plane

A two-dimensional system in which the coordinates of a point are its distances from two intersecting, usually perpendicular, straight lines called axes. (also known as coordinate grid or coordinate system)

coordinate system

coordinate system

coordinate system

A two-dimensional system in which the coordinates of a point are its distances from two intersecting, usually perpendicular, straight lines called axes. (also known as a coordinate grid or coordinate plane)

coordinates

coordinates

coordinates

An ordered pair of numbers that identify a point on a coordinate plane.
corresponding terms

corresponding terms

	l st Term	2 nd Term	3 rd Term	4 th Term
Add 3	3	6	9	12
Add 6	6	12	18	24

corresponding terms

S.S.				
	l st Term	2 nd Term	3 rd Term	4 th Term
Add 3	3	6	9	12
Add 6	6	12	18	24

Terms that are in the same position in a sequence of numbers.

In the pattern shown, 9 and 18 are the 3rd terms in each sequence; they are corresponding terms.

cube

cube

cube

A rectangular solid having 6 congruent square faces.

cubic unit

cubic unit

cubic unit

A unit such as a cubic meter to measure volume or capacity.

cup (c)

cup (c)

A customary unit of capacity. 1 cup = 8 fluid ounces

customary system

customary system

customary system

A system of measurement used in the U.S. The system includes units for measuring length, capacity, and weight.

data

Number of School Carnival Tickets Sold				
Kindergarten	22			
1 st Grade	15			
2 nd Grade	34			
3 rd Grade	9			
4 th Grade	16			
5 th Grade	29			
6 th Grade	11			

data

data

Number of School Carnival Tickets Sold				
Kindergarten	22			
1 st Grade	15			
2 nd Grade	34			
3 rd Grade	9			
4 th Grade	16			
5 th Grade	29			
6 th Grade	11			

Information, especially numerical information. Usually organized for analysis.

decagon

decagonal prism

decagonal prism

decagonal prism

A prism whose two bases are decagons.

decimal

decimal \$29.45 53.0 0.02

decimal

\$29.45 53.0 0.02 A number with one or more digits to the right of a decimal point. *Decimal* is used as another name for decimal fraction.

decimal fraction

decimal fraction

<u>38</u> 0.38

decimal fraction

 $0.38 = \frac{38}{100}$

A fractional number with a denominator of 10 or a power of 10. It can be written with a decimal point.

decimal point

decimal point

\$1.55 **3.2** decimal points

decimal point

\$1.55 3.2 † † decimal points

A dot separating the whole number from the fraction in decimal notation.

decimeter

decimeter

A hand span is *about* 1 decimeter.

decimeter

A metric unit of length. 1 decimeter = 0.1 meter 10 decimeters = 1 meter

A hand span is *about* 1 decimeter.

decompose

decompose 342300 + 40 + 2 $(3 \times 100) + (4 \times 10) + (2 \times 1)$

dekameter (dam)

dekameter (dam)

A school bus is about 1 dekameter.

dekameter (dam)

A metric unit of length. 1 dekameter = 10 meters

A school bus is *about* 1 dekameter.

denominator

- Equal parts described in fraction
- Equal parts in the whole

denominator

- Equal parts described in fraction
- Equal parts in the whole
- The number written below the line in a fraction. It tells how many equal parts are in the whole.

diagonal

diagonal

diagonal

A line that goes through vertices of a polygon that are not next to each other.

difference

difference

49.75 - 13.9 = 35.85

erence

The amount that remains after one quantity is subtracted from another.

Distributive Property

1 0

6

Distributive Property

		10 +	- 4		
6		6 × 10 = 60	$6 \times 4 = 24$		
	$6 \times 14 = 6 \times (10 + 4)$ = (6 × 10) + (6 × 4) = 60 + 24 - 84				

Distributive Property

$$10 + 4$$

$$6 \times 10 = 60 \qquad 6 \times 4 = 24$$

$$6 \times 14 = 6 \times (10 + 4)$$

$$= (6 \times 10) + (6 \times 4)$$

$$= 60 + 24$$

$$= 84$$

When one of the factors of a product is a sum, multiplying each addend before adding does not change the product.

dividend

dividend

8 | 578 *f* dividend

dividend

8 **578**

A quantity to be divided.

dividend

divisible

divisible

divisible

8 is divisible by 2 because there is no remainder. $8 \div 2 = 4$ A number is divisible by another number if the quotient is a counting number without a remainder.

divisor

divisor

divisor

The quantity by which another quantity is to be divided.

elapsed time

elapsed time

elapsed time

The amount of time that has passed.

equation

These expressions balance the scale because they are equal.

A statement that two mathematical expressions are equal.

These expressions balance the scale because they are equal.

equiangular triangle

equiangular triangle

equiangular triangle

A triangle with all equal angles (60°).

equilateral triangle

equilateral triangle

equilateral triangle

A triangle with all sides the same length.

equivalent fractions

equivalent fractions

equivalent fractions

Fractions that have the same value.

estimate

estimate

estimate

A number close to an exact amount. An estimate tells *about* how much or *about* how many.

evaluate

evaluate 42 - 13 = nn = 29

evaluate

42 - 13 = nn = 29

To find the value of a mathematical expression.

expanded form

expanded form

 $347.392 = 3 \times 100 + 4 \times 10 + 7 \times 1 + 3 \times (\frac{1}{10}) + 9 \times (\frac{1}{100}) + 2 \times (\frac{1}{1,000})$

expanded form

347.392 = $3 \times 100 + 4 \times 10 + 7 \times 1 +$ $3 \times (\frac{1}{10}) + 9 \times (\frac{1}{100}) +$ $2 \times (\frac{1}{1,000})$

A way to write numbers that shows the place value of each digit.

exponent

exponent

exponent

The number that tells the number of times the base is multiplied by itself.

 $10 \times 10 \times 10 \times 10 = 10,000$

expression

expression

no equal sign.

expression

no equal sign.

A variable or combination of variables, numbers, and symbols that represents a mathematical relationship.

factor

factor

An integer that divides evenly into another.

fluid ounce

fluid ounce

fluid ounce

A customary unit of capacity. 8 fluid ounces = 1 cup

foot (ft)

foot (ft)

12 inches = 1 foot

12 inches = 1 foot

A customary unit of length. 1 foot = 12 inches

formula

formula

A general mathematical rule that is written as an equation.

fraction

fraction

A way to describe a part of a whole or a part of a group by using equal parts.
fraction bar

fraction bar

$\frac{2}{3} = 2 \div 3$

fraction bar

 $\frac{2}{3} = 2 \div 3$

A horizontal bar that separates the numerator and the denominator.

fraction greater than one

fraction greater than one

numerator is greater than denominator

fraction greater than one numerator is
greater than
denominator

3

A fraction with a numerator greater than its denominator.

fraction less than one

fraction less than one

fraction less than one

A fraction with a numerator less than its denominator.

gallon (gal)

gallon (gal)

gallon (gal)

A customary unit of capacity. 1 gallon = 4 quarts

gram (g)

gram (g)

The mass of a paperclip is about 1 gram.

The mass of a paperclip is about 1 gram.

gram (g)

The standard unit of mass in the metric system. 1,000 grams = 1 kilogram

greater than

greater than

Greater than is used to compare two numbers when the first number is larger than the second number.

height

A perpendicular line segment from the base to the top of the figure.

heptagon

heptagon

heptagon

A polygon with 7 sides.

hexagon

A polygon with 6 sides.

hexagonal prism

hexagonal prism

hexagonal prism

A prism whose two bases are hexagons.

hierarchy

hundredth

hundredth

hundredth

One of 100 equal parts of a whole.

hundredths

hundredths

hundredths

In the decimal numeration system, hundredths is the name of the next place to the right of tenths.

inch (in)

inch (in)

A customary unit of length. 12 inches = 1 foot

inequality

inequality

These expressions **do not** balance the scale because they are not equal.

inequality

These expressions **do not** balance the scale because they are not equal. A mathematical sentence that compares two unequal expressions using one of the symbols < or >.

intersect

intersect

To meet or cross.

interval

interval

The distance between the values on the scale of a graph.

inverse operations

inverse operations

Multiplication and division are inverse operations.

$$8 \times 5 = 40$$

 $40 \div 5 = 8$

inverse operations Multiplication and division are inverse operations.

$$8 \times 5 = 40$$

 $40 \div 5 = 8$

Operations that undo each other.

isoscles triangle

isosceles triangle

isosceles triangle

A triangle that has exactly 2 equal sides.

kilogram (kg)

kilogram (kg)

Math book About $2\frac{1}{2}$ pounds

kilogram (kg)

Math book

About $2\frac{1}{2}$ pounds

A metric unit of mass equal to 1000 grams.

kilometer (km)

kilometer (km)

A kilometer (km) is about the length of 4 city blocks.

kilometer (km)

A kilometer (km) is about the length of 4 city blocks.

A metric unit of length equal to 1000 meters.

lateral face

lateral face

The face of a prism or pyramid that is not a base.

length

length

length

How long something is. The distance from one point to another. Length is measured in units such as inches, feet, centimeters, etc.

length (l)

less than

less than

Less than is used to compare two numbers when the first number is smaller than the second number.

like denominators

like denominators

like denominators

Denominators in two or more fractions that are the same.

line graph

line graph

A graph used to show how data changes over time with points connected by line segments.

line of symmetry

line of symmetry

line of symmetry

A line that divides a figure into two congruent halves that are mirror images of each other.

line plot

line plot

Number of pets

line plot

A diagram showing frequency of data on a number line.

line symmetry

liter (L)

large bottle of soda or bottle of water

liter (L)

liter (L)

1,000 mL = 1 L

large bottle of soda or bottle of water

The basic unit of capacity in the metric system. 1 liter = 1,000 milliliters

long division

long division

 $\begin{array}{r}
 332 \\
 \hline
 8 \\
 \hline
 23 \\
 \hline
 7636 \\
 -69 \\
 \hline
 73 \\
 -69 \\
 46 \\
 -46 \\
 0
 \end{array}$

long division $\begin{array}{r}
332 \\ R \\
23 \\
7636 \\
-69 \\
73 \\
-69 \\
46 \\
-46 \\
0
\end{array}$

A standard procedure suitable for dividing simple or complex multi-digit numbers.

lowest terms

lowest terms

lowest terms

 $\frac{4}{8}$ in lowest terms is $\frac{4}{8}$.

A fraction where the numerator and denominator have no common factor greater than 1.