English 6th Grade A-L Vocabulary Cards and Word Walls

Revised: 1/13/14

Important Notes for Teachers:

- The vocabulary cards in this file match the Common Core, the math curriculum adopted by the Utah State Board of Education, August 2010.
- The cards are arranged alphabetically.
- Each card has three sections.
 - Section 1 is only the word. This is to be used as a visual aid in spelling and pronunciation. It is also used when students are writing their own "kid-friendly" definition and drawing their own graphic.
 - Section 2 has the word and a graphic. This graphic is available to be used as a model by the teacher.
 - Section 3 has the word, a graphic, and a definition. This is to be used for the Word Wall in the classroom. For more information on using a Word Wall for Daily Review – see "Vocabulary – Word Wall Ideas" on this website.
- These cards are designed to help all students with math content vocabulary, including ELL, Gifted and Talented, Special Education, and Regular Education students.

For possible additions or corrections to the vocabulary cards, please contact the Granite School District Math Department at 385-646-4239.

Bibliography of Definition Sources:

Algebra to Go, Great Source, 2000. ISBN 0-669-46151-8

Math on Call, Great Source, 2004. ISBN-13: 978-0-669-50819-2

Math at Hand, Great Source, 1999. ISBN 0-669-46922

Math to Know, Great Source, 2000. ISBN 0-669-47153-4

Illustrated Dictionary of Math, Usborne Publishing Ltd., 2003. ISBN 0-7945-0662-3

Math Dictionary, Eula Ewing Monroe, Boyds Mills Press, 2006. ISBN-13: 978-1-59078-413-6

Student Reference Books, Everyday Mathematics, 2007.

Houghton-Mifflin eGlossary, http://www.eduplace.com

Interactive Math Dictionary, http://www.amathsdictionaryforkids.com/

absolute value

absolute value

$$\left| -5 \right| = 5$$

The distance of a number from zero on the number line. Absolute value is always positive.

acute triangle

acute triangle

acute triangle

A triangle with no angle measuring 90° or more.

addend

addend

addend

Any number being added.

Addition Property of Equality

Addition Property of Equality

$$8-5=3$$
 $8-5+5=3+5$
 $8+0=8$
 $8=8$

Addition
Property of
Equality

$$8-5=3$$
 $8-5+5=3+5$
 $8+0=8$
 $8=8$

If you add the same number to both sides of an equation, the two sides will remain equal.

Additive Identity Property of 0

Additive Identity Property of 0

$$a + 0 = a$$

$$a + 0 = a$$

Adding zero to a number gives a sum identical to the given number.

additive inverse

additive inverse

$$5 + (-5) = 0$$

additive inverse

$$5 + (-5) = 0$$

The opposite of a number. When a number is added to its additive inverse, the sum is 0.

algebraic expression

algebraic expression

$$3x + 2$$

algebraic expression

3x + 2

A group of numbers, symbols, and variables that express an operation or a series of operations.

algorithm

algorithm

Partial Product Example

```
555

x 7

35 Step 1: Multiply the ones.

350 Step 2: Multiply the tens.

3500 Step 3: Multiply the hundreds.

3885 Step 4: Add the partial products.
```

Partial Product Example

algorithm

```
555

× 7

35 Step 1: Multiply the ones.
350 Step 2: Multiply the tens.
3500 Step 3: Multiply the hundreds.
3885 Step 4: Add the partial products.
```

A step-by-step method for computing.

altitude

altitude

altitude

The perpendicular distance from a vertex to the opposite side of a plane figure.

area

area

2 rows of 5 = 10 square units or

 $2 \times 5 = 10$ square units

2 rows of 5 = 10 square units

or

 $2 \times 5 = 10$ square units

area

The measure, in square units, of the interior region of a two-dimensional figure or the surface of a three-dimensional figure.

array

array

array

 $\begin{array}{c} \textbf{3 rows of 4} \\ \textbf{or} \\ \textbf{3} \times \textbf{4} \end{array}$

An arrangement of objects in equal rows.

Associative Property of Addition

Associative Property of Addition

$$(5+7)+3=5+(7+3)$$

 $12+3=5+10$
 $15=15$

Associative Property of Addition

$$(5+7)+3=5+(7+3)$$

 $12+3=5+10$
 $15=15$

The sum stays the same when the grouping of addends is changed. (a + b) + c = a + (b + c), where a, b, and c stand for any real numbers.

Associative Property of Multiplication

Associative Property of Multiplication

$$(5 \times 7) \times 3 = 5 \times (7 \times 3)$$

 $35 \times 3 = 5 \times 21$
 $105 = 105$

Associative Property of Multiplication

$$(5 \times 7) \times 3 = 5 \times (7 \times 3)$$

 $35 \times 3 = 5 \times 21$
 $105 = 105$

The product stays the same when the grouping of factors is changed. $(a \times b) \times c = a \times (b \times c)$, where a, b, and c stand for any real numbers.

attribute

attribute

attribute

A characteristic. e.g., size, shape or color

axis

axis

axis

A reference line from which distances or angles are measured in a coordinate grid.

(plural - axes)

bar graph

bar graph

bar graph

A graph that uses the height or length of rectangles to compare data.

bar model

bar model

Sara has 3 times as many stamps in her collection as Emma. Sara has 24 stamps. How many stamps does Emma have?

24

Sarah's Stamps

Emily's ?
Stamps

bar model Sara has 3 times as many stamps in her collection as Emma. Sara has 24 stamps. How many stamps does Emma have?

Stamps

A drawing that looks like a segment of tape, used to illustrate number relationships. (also known as a strip diagram, tape diagram, fraction strip, or length model)

base of a polygon

base of a polygon

base of a polygon

The side of a polygon that is perpendicular to the altitude or height.

base of a solid figure

base of a solid figure

base of a solid figure

A base of a solid figure is usually thought of as a face upon which it can "sit." Most solid figures have more than one base.

base of an exponent

base of an exponent

base of an exponent

The number that is raised to a power. In 5^2 , 5 is the base and 2 is the exponent. 5 is raised to the power of 2. $(5^2 = 5 \times 5 = 25)$

benchmark

benchmark

A reference point, such as $0, \frac{1}{2}$, or 1, that is used for estimating fractions.

box plot

box plot

box plot

A diagram that shows the five number summary of a distribution. (Five number summary includes lowest value, lower quartile, median, upper quartile, and highest value.)

capacity

capacity

capacity

A measurement of the amount a container can hold when filled.

cluster

cluster

cluster

A group of the same or similar elements gathered or occurring closely together on a graph.

coefficient

coefficient

coefficient

A numerical factor in a term of an algebraic expression.

common denominator

common denominator

12 is a common denominator for:

 $\frac{2}{3}$ and $\frac{3}{4}$

common denominator

12 is a common denominator for:

$$\frac{2}{3}$$
 and $\frac{3}{4}$

For two or more fractions, a common denominator is a common multiple of the denominators.

common factor

common factor

Common Factors of 12 and 18: 1, 2, 3, 6

common factor

Common Factors of 12 and 18: 1, 2, 3, 6

Any common factor of two or more numbers.

common multiple

common multiple

```
4, 8, 12, 16, 20, 24, 28, 32, 36...
6, 12, 18, 24, 30, 36, 42...
```

Common Multiples of 4 and 6: 12, 24, 36...

common multiple

```
4, 8, 12, 16, 20, 24, 28, 32, 36...
6, 12, 18, 24, 30, 36, 42...
```

Common Multiples of 4 and 6: 12, 24, 36...

Any common multiple of two or more numbers.

Commutative Property of Addition

Commutative Property of Addition

$$5 + 3 = 3 + 5$$

Commutative Property of Addition

$$5 + 3 = 3 + 5$$

The sum stays the same when the order of the addends is changed. a + b = b + a, where a and b are any real numbers.

Commutative Property of Multiplication

Commutative
Property of
Multiplication

$$4 \times 7 = 7 \times 4$$

Commutative Property of Multiplication

$$4 \times 7 = 7 \times 4$$

The product stays the same when the order of the factors is changed. $a \times b = b \times a$, where a and b are any real numbers.

compatible numbers

compatible numbers

$$82.8 \div 4.6 = x$$

$$\downarrow \qquad \qquad \downarrow$$

$$80 \div 4 = x$$

compatible numbers

$$82.8 \div 4.6 = x$$
 \downarrow
 $80 \div 4 = x$

Pairs of numbers that are easy to compute mentally.

compose

compose

compose

To put together, as in numbers or shapes.

composite figure

composite figure

composite figure

A shape made up of two or more simpler figures, such as triangles and quadrilaterals.

congruent

congruent

congruent

Having exactly the same size and shape.

constant

constant

$$5x + 4$$
constant

constant

$$5x + 4$$
constant

A number with a value that is always the same.

constant speed

constant speed

constant speed

Movement at a fixed (constant) distance per unit of time.

conversion factor

conversion factor

8 yds.
$$\times \frac{36 \text{ in.}}{1 \text{ yd.}} = \frac{8 \text{ yds.}}{1} \times \frac{36 \text{ in.}}{1 \text{ yd.}} = 288 \text{ in.}$$

conversion factor

8 yds.
$$\times \frac{36 \text{ in.}}{1 \text{ yd.}} = \frac{8 \text{ yds.}}{1} \times \frac{36 \text{ in.}}{1 \text{ yd.}} = 288 \text{ in.}$$

A type of rate in which two quantities use different units but remain equal; used to convert a measurement from one unit to another.

coordinate grid

coordinate grid

coordinate grid

A two-dimensional system in which the coordinates of a point are its distances from two intersecting, usually perpendicular, straight lines called axes.

(also known as coordinate plane or coordinate system)

coordinate pair

coordinate pair

$$(-5, 2)$$

$$(-5, 2)$$

A pair of numbers that gives the coordinates of a point on a grid in this order: (horizontal coordinate, vertical coordinate). (also known as an ordered pair)

coordinate plane

coordinate plane

coordinate plane

A two-dimensional system in which the coordinates of a point are its distances from two intersecting, usually perpendicular, straight lines called axes. (also known as coordinate grid or coordinate system)

coordinate system

coordinate system

coordinate system

A two-dimensional system in which the coordinates of a point are its distances from two intersecting, usually perpendicular, straight lines called axes. (also known as a coordinate grid or coordinate plane)

coordinates

coordinates

$$(3, -5)$$

coordinates

$$(3, -5)$$

An ordered pair of numbers that identify a point on a coordinate plane.

cube

cube

cube

A rectangular solid having 6 congruent square faces.

cubic unit

cubic unit

cubic unit

A unit such as a cubic meter to measure volume or capacity.

customary system

customary system

customary system

A system of measurement used in the U.S. The system includes units for measuring length, capacity, and weight.

data

data

	chool Carnival ts Sold
Kindergarten	22
1 st Grade	15
2 nd Grade	34
3 rd Grade	9
4 th Grade	16
5 th Grade	29
6 th Grade	11

data

Number of School Carnival			
Tick	Tickets Sold		
Kindergarten	22		
1 st Grade	15		
2 nd Grade	34		
3 rd Grade	9		
4 th Grade	16		
5 th Grade	29		
6 th Grade	11		

Information, especially numerical information.
Usually organized for analysis.

decimal

decimal

decimal

\$29.45

53.0 0.02

A number with one or more digits to the right of a decimal point.

Decimal is used as another name for decimal fraction.

decimal fraction

decimal fraction

$$0.38 = \frac{38}{100}$$

decimal fraction

$$0.38 = \frac{38}{100}$$

A fractional number with a denominator of 10 or a power of 10. It can be written with a decimal point.

decompose

decompose

decompose

To separate into components or basic elements.

denominator

denominator

3

5 ← denominator

denominator

3

5 ← denominator

The number or expression written below the line in a fraction.

dependent variable

dependent variable

# Bikes	1	2	3	4
Wheels	2	4	6	8

dependent variable

dependent variable

# Bikes	1	2	3	4
Wheels	2	4	6	8

dependent variable

In a function, a variable whose value is determined by the value of the related independent variable.

diagonal

diagonal

diagonal

A line that goes through vertices of a polygon that are not next to each other.

difference

difference

$$49.75 - 13.9 = 35.85$$
 difference

difference

The amount that remains after one quantity is subtracted from another.

distribution

distribution

Age of People Attending a Movie		
Age Ranges	Tally	Frequency
0 - 9	Ш	3
10 - 19	1111	4
20 - 29	11111	6
30 - 39	-HTT111	8
40 - 49		0 5533
50 - 59	I	1
60-69	II	2 PorCo

distribution

Age of People Attending a Movie		
Age Ranges	Tally	Frequency
0 - 9	Ш	3
10 - 19	1111	4
20 - 29	-HTT I	6
30 - 39	-HT III	8
40 - 49		0 📆
50 - 59	1	1
60-69	II	2 POPC

A table that shows how many of each type of data.

Distributive Property

Distributive Property

$$5(6+8) = (5 \times 6) + (5 \times 8)$$

Distributive Property

$$5(6+8) = (5 \times 6) + (5 \times 8)$$

$$a \times (b + c) = (a \times b) + (a \times c)$$

and
 $a \times (b - c) = (a \times b) - (a \times c)$,
where a, b , and c stand
for any real numbers.

dividend

dividend

dividend

A quantity to be divided.

divisible

divisible

8 is divisible by 2 because there is no remainder.

$$8 \div 2 = 4$$

divisible

8 is divisible by 2 because there is no remainder.

 $8 \div 2 = 4$

A number is divisible by another number if the quotient is a counting number without a remainder.

Division Property of Equality

Division Property of Equality

$$3 \times 7 = 21$$

$$3 \times 7$$

$$3$$

$$3$$

$$1 \times 7 = 7$$

$$7 = 7$$

$$3 \times 7 = 21$$

$$\frac{3 \times 7}{3} = \frac{21}{3}$$

$$1 \times 7 = 7$$

$$7 = 7$$

If you divide both sides of an equation by the same nonzero number, the two sides will remain equal.

divisor

divisor

divisor

The quantity by which another quantity is to be divided.

dot plot

dot plot

dot plot

A diagram showing frequency of data on a number line. (also known as a line plot)

double number line diagram

double number line diagram

double number line diagram

A graphic diagram that shows a proportional relationship between two quantities.

edge

edge

edge

The place where two flat surfaces of a solid figure meet.

equation

$$9\times3=20+7$$

$$9 \times 3 = 20 + 7$$

A statement that two mathematical expressions are equal.

equiangular triangle

equiangular triangle

equiangular triangle

A triangle with all equal angles (60°).

equilateral triangle

equilateral triangle

equilateral triangle

A triangle with all sides the same length.

equivalent

equivalent

equivalent

$$9 + 12 = 1 + 20$$

Naming the same number.

equivalent expressions

equivalent expressions

$$n + 4 = 4 + n$$
 $5 + 4 = 4 + 5$
 $9 = 9$

$$n + 4 = 4 + n$$
 $5 + 4 = 4 + 5$
 $9 = 9$

Expressions which are equal to each other for any values of their variables. They can be generated by properties of operations.

equivalent fractions

equivalent fractions

equivalent fractions

Fractions that have the same value.

equivalent ratios

equivalent ratios

$$\frac{6}{12}=\frac{2}{4}$$

Both ratios simplify to $\frac{1}{2}$.

equivalent ratios

$$\frac{6}{12}=\frac{2}{4}$$

Both ratios simplify to $\frac{1}{2}$.

Two ratios that have the same value when simplified.

evaluate

evaluate

$$42 - 13 = n$$

$$n = 29$$

evaluate

$$42 - 13 = n$$

$$n = 29$$

exponent

exponent

exponent

The number that tells how many equal factors there are. In 5^2 , 5 is the base and 2 is the exponent. 5 is raised to the power of 2. $(5^2 = 5 \times 5 = 25)$

expression

expression

$$5x + 3$$

expression
$$5x + 3$$

$$5x + 3$$

A variable or combination of variables, numbers, and symbols that represents a mathematical relationship.

face

face

face

A flat surface on a solid figure.

factor

factor

$$\frac{2 \times 6}{\text{factors}} = 12$$

factor

An integer that divides evenly into another.

first quartile

first quartile

first quartile

The first quartile is the middle (the median) of the lower half of the data on a box plot. One-fourth of the data lies below the first quartile and three-fourths lies above. (also known as Q1 or lower quartile)

formula

formula

Volume of a cube is $V = s^3$.

formula

Volume of a cube is $V = s^3$.

A general mathematical rule that is written as an equation.

fraction

fraction

Measurement Model

Bar Diagram (thickened number line)

Set Model Area Model

What is $\frac{3}{4}$?

fraction

Measurement Model

Bar Diagram (thickened number line)

Set Model

Area

Model

What is $\frac{3}{4}$?

A way of representing part of a whole or part of a group by telling the number of equal parts in the whole and the number of parts you are describing.

fraction bar

$$\frac{2}{3} = 2 \div 3$$

$$\frac{2}{3} = 2 \div 3$$

A horizontal bar that separates the numerator and the denominator.

fraction greater than one

fraction greater than one

numerator is greater than denominator

fraction greater than one numerator is greater than denominator

A fraction with a numerator greater than its denominator.

fraction less than one

fraction less than one numerator is less than denominator

fraction less than one

A fraction with a numerator less than its denominator.

frequency table

frequency table

Score	Tally	Frequency
1	1	1
2	1	1
3	III	3
4	1	1
5	IIII	4
6	Ш	5
7	IIII I	6
8	Ш	5
9	III	3
10	1	1

frequency table

Score	Tally	Frequency
1	1	1
2	1	1
3	III	3
4	1	1
5	IIII	4
6	Ш	5
7	IIII I	6
8	Ш	5
9	III	3
10	1	1

A table which shows the number of times each data value or range of values occurs.

gallon (gal)

gallon (gal)

gallon (gal)

A customary unit of capacity. 1 gallon = 4 quarts

gap

Hours Watching TV in One Week

gap

Hours Watching TV in One Week

gap

A place on a graph where no data values are present.

gram (g)

gram (g)

The mass of a paperclip is about 1 gram.

The mass of a paperclip is about 1 gram.

gram (g)

The standard unit of mass in the metric system.

1,000 grams = 1 kilogram

greater than

greater than

greater than

Greater than is used to compare two numbers when the first number is larger than the second number.

greater than or equal to

greater than or equal to

$$a \ge b$$

a is greater than or equal to b

greater than or equal to

$$a \geq b$$

a is greater than or equal to b

Greater than or equal to is used to compare two quantities in an inequality where the first quantity is larger than or equal to the second quantity.

greatest common factor

greatest common factor

$$GCF = 6$$

greatest common factor

The largest factor of two or more numbers.

$$GCF = 6$$

height

height

height

The perpendicular distance from a vertex to the opposite side of a plane figure.

histogram

histogram

histogram

A bar graph in which the labels for the bars are numerical intervals.

independent variable

independent variable

independent variable

# Bikes	1	2	3	4
Wheels	2	4	6	8

independent variable

# Bikes	1	2	3	4
Wheels	2	4	6	8

A variable in a mathematical equation whose value determines that of a dependent variable.

inequality

inequality

inequality

A mathematical sentence that compares two unequal expressions using one of the symbols $<,>,\leq,\geq,$ or \neq .

infinite

infinite

infinite

Having no boundaries or limits.

integers

integers

integers

The set of whole numbers and their opposites.

interquartile range

interquartile range

interquartile range

The difference between the upper quartile and the lower quartile.

interval

interval

The range of values represented by each bar. The data is divided into equal increments.

inverse operations

inverse operations

$$d + 8 = 31$$

 $d + 8 - 8 = 31 - 8$
 $d + 0 = 23$
 $d = 23$

inverse operations

$$d + 8 = 31$$
 $d + 8 - 8 = 31 - 8$
 $d + 0 = 23$
 $d = 23$

Operations that undo each other.

is not equal to

is not equal to

 $3.7 \neq 5.2$

is not equal to

 $3.7 \neq 5.2$

A symbol used to compare two quantities in an inequality where the two quantities do not equal each other.

isoscles triangle

isosceles triangle

isosceles triangle

A triangle that has exactly 2 equal sides.

lateral area

lateral area

$$A = \frac{1}{2}$$
 (6) (4)
 $A = 12$ in.²
4 lateral faces:
 $L = 4 \times 12 = 48$ in.²

lateral area

A =
$$\frac{1}{2}$$
 bh
A = $\frac{1}{2}$ (6) (4)
A = 12 in.²
4 lateral faces:
L = 4 × 12 = 48 in.²

The sum of the lateral faces of a solid figure.

lateral face

lateral face

lateral face

The face of a prism or pyramid that is not a base.

least common multiple

least common multiple

LCM = 24

least common multiple

LCM = 24

The smallest common multiple of a set of two or more numbers.

length

length

length

How long something is.
The distance from one point to another.
Length is measured in units such as inches, feet, centimeters, etc.

length (l)

length (l)

length (l)

One dimension of a two- or threedimensional figure.

less than

less than

less than

Less than is used to compare two numbers when the first number is smaller than the second number.

less than or equal to

less than or equal to

$$a \leq b$$
 $a \text{ is less than}$
 $a \text{ or equal to } b$

less than or equal to

$$a \leq b$$

a is less than or equal to b

Less than or equal to is used to compare two quantities in an inequality where the first quantity is smaller than or equal to the second quantity.

like terms

like terms

like terms

Terms that have the same variables and the same exponents.

line of symmetry

line of symmetry

line of symmetry

A line that divides a figure into two congruent halves that are mirror images of each other.

line plot

line plot

line plot

A diagram showing frequency of data on a number line. (also known as a dot plot)

line symmetry

line symmetry

What a figure has if it can be folded in half and its two parts match exactly.

linear equation

linear equation

x	у
0	3
2	5
4	7
6	9

linear equation

y = x + 3)
-----------	---

x	y
0	3
2	5
4	7
6	9

An equation whose solutions form a straight line on a coordinate plane.

liter (L)

liter (L)

large bottle of soda or bottle of water

1,000 mL = 1 L

liter (L)

large bottle of soda or bottle of water

1,000 mL = 1 L

The basic unit of capacity in the metric system.

1 liter = 1,000 milliliters

lower extreme

lower extreme

lower extreme

The smallest or least number out of a data set, usually farther away from interquartile range than other data in set. (also known as minimum)

lower quartile

lower quartile

lower quartile

The lower quartile is the middle (the median) of the lower half of the data on a box plot. One-fourth of the data lies below the first quartile and three-fourths lies above.

(also known as Q1 or first quartile)